
1

The PSLQ Algorithm:
Techniques for Efficient Computation

David H Bailey
Lawrence Berkeley National Laboratory
http://crd.lbl.gov/~dhbailey

2

LBNL’s high-precision software

  QD: double-double (31 digits) and quad-double (62 digits).
  ARPREC: arbitrary precision.
  Low-level routines written in C++.
  C++ and Fortran-90 translation modules permit use with existing C++ and

Fortran-90 programs -- only minor code changes are required.
  Includes many common functions: sqrt, cos, exp, gamma, etc.
  PSLQ, root finding, numerical integration.

Available at: http://www.experimentalmath.info

Authors: Xiaoye Li, Yozo Hida, Brandon Thompson and DHB.
Currently being maintained with the able assistance of Alex Kaiser of LBNL.

3

The PSLQ integer relation algorithm

Let (xn) be a given vector of real numbers. An integer relation algorithm
finds integers (an) such that

(or within “epsilon” of zero, where epsilon = 10-p and p is the precision).

At the present time the “PSLQ” algorithm of mathematician-sculptor
Helaman Ferguson is the most widely used integer relation algorithm. It
was named one of ten “algorithms of the century” by Computing in Science
and Engineering.

1. H. R. P. Ferguson, DHB and S. Arno, “Analysis of PSLQ, an integer relation finding algorithm,”
Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369.
2. DHB and D. J. Broadhurst, “Parallel integer relation detection: Techniques and applications,” Mathematics
of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736.

a1x1 + a2x2 + · · · + anxn = 0

4

PSLQ, continued

  PSLQ constructs a sequence of integer-valued matrices Bn that reduces
the vector y = x Bn, until either the relation is found (as one of the columns
of Bn), or else precision is exhausted.

  At the same time, PSLQ generates a steadily growing bound on the size
of any possible relation.

  When a relation is found, the size of smallest entry of the vector y abruptly
drops to roughly “epsilon” (i.e. 10-p, where p is the number of digits of
precision).

  The size of this drop can be viewed as a “confidence level” that the
relation is real and not merely a numerical artifact -- a drop of 20+ orders
of magnitude almost always indicates a real relation.

  PSLQ (or any other integer relation scheme) requires very high precision
arithmetic (at least nd digits, where d is the size in digits of the largest ak),
both in the input data and in the operation of the algorithm.

5

Decrease of log10(mink |yk|) as a function
of iteration number in a typical PSLQ run

6

Methodology for using PSLQ to
recognize an unknown constant α	

  Calculate α to high precision – typically 100 - 1000 digits. This is often the
most computationally expensive part of the entire process.

  Based on experience with similar constants or relations, make a list of
possible terms on the right-hand side (RHS) of a linear formula for α, then
calculate each of the n RHS terms to the same precision as α.

  If you suspect α is algebraic of degree n (the root of a degree-n polynomial
with integer coefficients), compute the vector (1, α, α2, α3, …, αn).

  Apply PSLQ to the (n+1)-long vector, using the same numeric precision as
α, but with a detection threshold a few orders of magnitude larger than
“epsilon”– e.g., 10-480 instead of 10-500 for 500-digit arithmetic.

  When PSLQ runs, look for a detection following a drop in the size of the
reduced y vector by at least 20 orders of magnitude, to value near epsilon.

  If no credible relation is found, try expanding the list of RHS terms.
  Another possibility is to search for multiplicative relations (i.e., monomial

expressions), which can be done by taking logarithms of α and constants.

7

Bifurcation points in chaos theory:
The first “real” application of PSLQ

exhibits 8-way periodicity instead
of 4-way periodicity.

By means of a sequential
approximation scheme, one can
obtain the numerical value of t to
any desired precision:

Let t = B3 = the smallest r such
that the “logistic iteration”

3.544090359551922853615965986604804540583099845444573675457812
5303058429428588630122562585664248917999626…

Applying PSLQ to (1, t, t2, t3, …, t12), we obtained the result that t is a root of:

xn+1 = rxn(1− xn)

0 = 4913 + 2108t2 − 604t3 − 977t4 + 8t5 + 44t6 + 392t7

−193t8 − 40t9 + 48t10 − 12t11 + t12

8

Ising integrals

We recently applied our methods to study three classes of integrals that
arise in the Ising theory of mathematical physics – Dn and two others:

where in the last line uk = t1 t2 … tk.

DHB, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,” Journal of Physics A: Mathematical
and General, vol. 39 (2006), pg. 12271-12302.

Cn :=
4
n!

� ∞

0
· · ·

� ∞

0

1
��n

j=1(uj + 1/uj)
�2

du1

u1
· · · dun

un

Dn :=
4
n!

� ∞

0
· · ·

� ∞

0

�
i<j

�
ui−uj

ui+uj

�2

��n
j=1(uj + 1/uj)

�2

du1

u1
· · · dun

un

En = 2
� 1

0
· · ·

� 1

0




�

1≤j<k≤n

uk − uj

uk + uj




2

dt2 dt3 · · · dtn

9

Ising integral evaluations

D2 = 1/3
D3 = 8 + 4π2/3− 27 L−3(2)
D4 = 4π2/9− 1/6− 7ζ(3)/2
E2 = 6− 8 log 2
E3 = 10− 2π2 − 8 log 2 + 32 log2 2
E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3

+16π2 log 2− 22π2/3

E5
?= 42− 1984 Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2

+40π2 log2 2− 62π2/3 + 40(π2 log 2)/3 + 88 log4 2
+464 log2 2− 40 log 2

where Lin(x) is the polylog function. D2, D3 and D4 were originally provided
to us by mathematical physicist Craig Tracy, who hoped that our tools could
help identify D5.

10

Recursions in Ising integrals

Consider the 2-parameter class of Ising integrals (which arises in QFT for odd k):

After computing 1000-digit numerical values for all n up to 36 and all k up to 75
(performed on a highly parallel computer system), we discovered (using PSLQ)
linear relations in the rows of this array. For example, when n = 3:

Similar, but more complicated, recursions have been found for all n.
DHB, D. Borwein, J.M. Borwein and R.E. Crandall, “Hypergeometric forms for Ising-class integrals,”
Experimental Mathematics, vol. 16 (2007), pg. 257-276.

J. M. Borwein and B. Salvy, “A proof of a recursion for Bessel moments,” Experimental Mathematics, vol. 17
(2008), pg. 223-230.

0 = C3,0 − 84C3,2 + 216C3,4

0 = 2C3,1 − 69C3,3 + 135C3,5

0 = C3,2 − 24C3,4 + 40C3,6

0 = 32C3,3 − 630C3,5 + 945C3,7

0 = 125C3,4 − 2172C3,6 + 3024C3,8

Cn,k =
4
n!

� ∞

0
· · ·

� ∞

0

1
��n

j=1(uj + 1/uj)
�k+1

du1

u1
· · · dun

un

11

Recent result (18 Jan 2009)

∆3(−1) =
2√
π

� ∞

0

(−1 + e−u2
+
√

π u erf(u))3

u6
du

=
1
15

�
6 + 6

√
2− 12

√
3− 10π + 30 log(1 +

√
2) + 30 log(2 +

√
3)

�

As in many of the previous results, this was found by first computing the
integral to high precision (250 to 1000 digits), conjecturing possible terms
on the right-hand side, then applying PSLQ to look for a relation. We now
have proven this result.

Dozens of similar results have since been found (see next few viewgraphs),
raising hope that all box integrals eventually will be evaluated in closed
form.

DHB, J. M. Borwein and R. E. Crandall, “Advances in the theory of box integrals,” manuscript, Mar 2009,
available at http://crd.lbl.gov/~dhbailey/dhbpapers/BoxII.pdf.

12

Recent evaluations of box integrals

Here F is hypergeometric function; G is Catalan; Ti is Lewin’s inverse-tan function.

n s Bn(s)
any even s ≥ 0 rational, e.g., : B2(2) = 2/3
1 s �= −1 1

s+1

2 -4 − 1
4 −

π
8

2 -3 −
√

2
2 -1 2 log(1 +

√
2)

2 1 1
3

√
2 + 1

3 log(1 +
√

2)
2 3 7

5

√
2 + 3

20 log(1 +
√

2)
2 s �= −2 2

2+s 2F1

�
1
2 ,− s

2 ; 3
2 ;−1

�

3 -5 − 1
6

√
3− 1

12π
3 -4 − 3

2

√
2 arctan 1√

2

3 -2 −3G + 3
2π log(1 +

√
2) + 3 Ti2(3− 2

√
2)

3 -1 − 1
4π + 3

2 log
�
2 +

√
3
�

3 1 1
4

√
3− 1

24π + 1
2 log

�
2 +

√
3
�

3 3 2
5

√
3− 1

60π − 7
20 log

�
2 +

√
3
�

13

Elliptic Integrals

Recent research in integrals of elliptic functions have revealed hundreds of
heretofore unknown identities, for instance:

−2
� 1

0
xK(x) dx + 3

� 1

0
xE(x) dx = 0

2
� 1

0
K2(x) dx− 4

� 1

0
K(x)E(x) dx + 3

� 1

0
E2(x) dx−

� 1

0
K �(x)E�(x) dx = 0

−2
� 1

0
K3(x)K �(x)E�(x) dx +

� 1

0
E(x)K �3(x)E�(x) dx = 0

These studies involved computing thousands of individual definite
integrals, each to at least 1600-digit precision, then searching for
relations among them using PSLQ.

14

Statement of the PSLQ algorithm

Initialization:

1. For j := 1 to n: for i := 1 to n: if i = j then set Aij := 1 and Bij := 1
else set Aij := 0 and Bij := 0; endfor; endfor.

2. For k := 1 to n: set sk :=
��n

j=k x
2
j ; endfor. Set t = 1/s1. For k := 1 to

n: set yk := txk; sk := tsk; endfor.

3. Initial H: For j := 1 to n − 1: for i := 1 to j − 1: set Hij := 0; endfor;
set Hjj := sj+1/sj ; for i := j + 1 to n: set Hij := −yiyj/(sjsj+1); endfor;
endfor.

4. Reduce H: For i := 2 to n: for j := i − 1 to 1 step −1: set t :=
nint(Hij/Hjj); and yj := yj + tyi; for k := 1 to j: set Hik := Hik − tHjk;
endfor; for k := 1 to n: set Aik := Aik − tAjk and Bkj := Bkj + tBki;
endfor; endfor; endfor.

15

Statement of the PSLQ algorithm,
continued

Iteration:

1. Select m such that γ
i|Hii| is maximal when i = m.

2. Exchange the entries of y indexed m and m + 1, the corresponding rows
of A and H, and the corresponding columns of B.

3. Remove corner on H diagonal: If m ≤ n−2 then set t0 :=
�

H2
mm + H

2
m,m+1,

t1 := Hmm/t0 and t2 := Hm,m+1/t0; for i := m to n: set t3 := Him,
t4 := Hi,m+1, Him := t1t3 + t2t4 and Hi,m+1 := −t2t3 + t1t4; endfor;
endif.

4. Reduce H: For i := m + 1 to n: for j := min(i − 1, m + 1) to 1 step
−1: set t := nint(Hij/Hjj) and yj := yj + tyi; for k := 1 to j: set
Hik := Hik − tHjk; endfor; for k := 1 to n: set Aik := Aik − tAjk and
Bkj := Bkj + tBki; endfor; endfor; endfor.

5. Norm bound: Compute M := 1/ maxj |Hjj |. Then there can exist no
relation vector whose Euclidean norm is less than M .

6. Termination test: If the largest entry of A exceeds the level of numeric
precision used, then precision is exhausted. If the smallest entry of the y

vector is less than the detection threshold (see below), a relation has been
detected and is given in the corresponding column of B.

16

Multi-level implementations of PSLQ

  In spite of the effectiveness of PSLQ, computation time grows cubically
with the vector size n and also increases sharply with the level of
numerical precision employed.

  Huge savings in run time can be achieved by employing a “two-level”
implementation of PSLQ: Perform most iterations with simple double-
precision arithmetic, periodically updating the multiprecision arrays.

  Because double-precision arithmetic is so much faster, savings of up to
100X can be achieved.

  For very large n and very high precision, additional savings can be
achieved by employing a “three-level” scheme: double precision,
“intermediate precision” (typically 120 digits), and full multiprecision.

17

Details of two-level PSLQ

1.  Perform standard PSLQ initialization.
2.  Perform DP “re-initialization”: set A and B = I, y = y (scaled so max =

1.0), and H = H (here underscore denotes DP approximations).
3.  Perform LQ matrix factorization of H, and replace H with lower-diagonal.
4.  Perform PSLQ iterations using DP arrays. When the largest entry of A

and B exceeds 1013, or if a very small entry is detected in the y vector,
update full-precision y, A, B, H arrays by matrix multiplication.

5.  Check full-precision y vector for an entry that is zero (or smaller than
some acceptable epsilon). If so, a relation has been detected.

6.  Compute norm bound.
7.  Repeat beginning with step 2.
Notes:
  Computation of full-precision A matrix may be omitted.
  Full-precision H matrix will not be in lower-triangular form, and thus

cannot be used to compute norm bounds, but H can be used for this.

18

Some potential difficulties

  Occasionally a very large entry (> 253 = 9 x 1015 approx.) is produced in
the double precision A or B matrix, in spite of the 1013 cutoff.

  One must also check if any intermediate value produced in the
computation of any entry of A or B exceeds 253.

  When this happens, it is necessary to:
1.  Abandon the current set of DP iterations.
2.  Retreat to stored values of y, A, B and H at some previous iteration.
3.  Update the multiprecision arrays using these stored values.
4.  Perform a full LQ matrix factorization on H.
5.  Perform multiprecision iterations, checking periodically (typically every ten

iterations) to see if the dynamic range of the y vector has reduced to the
point that DP iterations are safe again.

  A three-level implementation saves time on very large problems above a
two-level scheme, mostly because intermediate precision can be used to
handle these special cases instead of full precision.

19

Performance results for 1-2-3 level PSLQ:
Recover polynomial for alpha = 3^1/r – 2^1/s

One-level Two-level Three-level

r, s n Iterations Digits Time Digits Time Digits Time

5,5 26 5143 180 32.37 190 1.29

5,6 31 9357 240 105.48 250 3.16

6,6 37 15217 310 298.85 320 7.19

6,7 43 25361 420 942.66 420 17.22

7,7 50 36947 500 2363.71 510 36.29

7,8 57 60817 680 90.08

8,8 65 86684 850 195.19 910 233.48

8,9 73 124521 1050 425.67 1120 460.34

9,9 82 174140 1310 934.96 1370 922.90

9,10 91 245443 1620 2032.69 1680 1780.65

10,10 101 342931 2000 4968.64 2060 3366.92

20

The “multi-pair” PSLQ algorithm

  The standard PSLQ algorithm (even the basic one-level scheme) is poorly
suited to parallel processing, because of recursions in the inner loop of
the reduction step.

  In attempt to devise a scheme better suited for parallel processing, DHB
developed the “multi-pair” PSLQ algorithm.

  The multi-pair PSLQ algorithm selects certain adjacent pairs of indices
that can be reduced in one step, independently of the other pairs, thus
providing an opportunity for parallel processing.

  As it turns out, the multi-pair PSLQ algorithm runs faster even on a single
processor.

  Two-level and three-level multi-pair PSLQ schemes have been devised.
Parallel versions of these have also been devised, albeit it with great
difficulty.

  DHB has used “multi-pair” PSLQ (mostly 1- and 2-level) exclusively in
recent research work.

21

Statement of the multi-pair PSLQ
algorithm

Initialize:

1. For j := 1 to n: for i := 1 to n: if i = j then set Aij := 1 and Bij := 1
else set Aij := 0 and Bij := 0; endfor; endfor.

2. For k := 1 to n: set sk :=
��n

j=k x
2
j ; endfor; set t = 1/s1; for k := 1 to

n: set yk := txk; sk := tsk; endfor.

3. Initial H: For j := 1 to n − 1: for i := 1 to j − 1: set Hij := 0; endfor;
set Hjj := sj+1/sj ; for i := j + 1 to n: set Hij := −yiyj/(sjsj+1); endfor;
endfor.

22

Statement of the multi-pair PSLQ
algorithm, continued

Iterate.

1. Sort the entries of the (n − 1)-long vector {γi|Hii|} in decreasing order,
producing the sort indices.

2. Beginning at the sort index m1 corresponding to the largest γ
i|Hii|, select

pairs of indices (mi, mi + 1), where mi is the sort index. If at any step
either mi or mi + 1 has already been selected, pass to the next index in
the list. Continue until either βn pairs have been selected, or the list
is exhausted. Let p denote the number of pairs actually selected in this
manner.

3. For i := 1 to p, exchange the entries of y indexed mi and mi + 1, and the
corresponding rows of A, B and H; endfor.

4. Remove corners on H diagonal: For i := 1 to p: if mi ≤ n − 2 then set
t0 :=

�
H2

mi,mi
+ H

2
mi,mi+1, t1 := Hmi,mi/t0 and t2 := Hmi,mi+1/t0; for

i := mi to n: set t3 := Hi,mi ; t4 := Hi,mi+1; Hi,mi := t1t3 + t2t4; and
Hi,mi+1 := −t2t3 + t1t4; endfor; endif; endfor.

23

Statement of the multi-pair PSLQ,
continued

6. Reduce H: For i := 2 to n: for j := 1 to n− i + 1: set l := i + j − 1; for
k := j+1 to l−1: set Hlj := Hlj−TlkHkj ; endfor; set Tlj := nint(Hlj/Hjj)
and Hlj := Hlj − TljHjj ; endfor; endfor.

7. Update y: For j := 1 to n − 1: for i := j + 1 to n: set yj := yj + Tijyi;
endfor; endfor.

8. Update A and B: For k := 1 to n: for j := 1 to n− 1: for i := j + 1 to n:
set Aik := Aik − TijAjk and Bjk := Bjk + TijBik; endfor; endfor; endfor.

9. Norm bound: Compute M := 1/ maxj |Hjj |. Then there can exist no
relation vector whose Euclidean norm is less than M .

10. Termination test: If the largest entry of A exceeds the level of numeric
precision used, then precision is exhausted. If the smallest entry of the y

vector is less than the detection threshold (see section 2), a relation has
been detected and is given in the corresponding row of B.

24

Performance results for multi-pair PSLQ:
Recover polynomial for alpha = 3^1/r – 2^1/s

One-level Two-level Three-level

r, s n Iterations Digits Time Digits Time Digits Time

5,5 26 558 180 26.08 180 1.48

5,6 31 840 230 70.71 240 3.43

6,6 37 1136 310 189.27 310 7.84

6,7 43 1625 400 479.07 410 17.22

7,7 50 2071 500 1130.85 500 35.64

7,8 57 2410 660 69.39

8,8 65 3723 800 169.62 880 214.66

8,9 73 4943 1010 358.07 1100 427.29

9,9 82 6169 1260 744.20 1320 804.51

9,10 91 7850 1560 1556.37 1600 1450.29

10,10 101 10017 1890 3283.08 1950 2747.12

25

Large test problems

1.  “Fibonacci”:
  Studies a conjecture of Broadhurst on the dimension of certain Euler sums.
  n = 145.
  5,000 digits.

2.  “Bifurcation”:
  Finds the polynomial satisfies by the 8-16 bifurcation in the logistic iteration.
  n = 120.
  10,000 digits.

3.  “S(20)”:
  Finds an analytic evaluation of certain constants involving Clausen values.
  n = 118.
  5,000 digits.

4.  “Ladder”:
  Finds a relation among constants associated with a root of Lehmer’s poly.
  n = 125.
  50,000 digits.

26

Parallel results on three test problems

Fibonacci B4 S(20)
Processors Time Speedup Time Speedup Time Speedup
1 47788 1.00 90855 1.00 23208 1.00
2 24665 1.94 46134 1.97 11973 1.94
4 12945 3.69 23966 3.79 6305 3.68
8 7076 6.75 12924 7.03 3470 6.69
16 4180 11.43 7424 12.24 2126 10.92
32 2994 15.96 4865 18.68 1548 14.99
48 2463 19.40 4049 22.44 1303 17.81

27

Work to be done

  These results are nearly 10 years old, employed an old all-Fortran
multiprecision library and the OpenMP parallel model.

  The ARPREC package does not lend itself to OpenMP parallelization –
each individual “thread” requires too much context.

  The MPI model can be used, but only for very large problems, because of
greater data transfer overhead.

  The most likely parallel target for a parallel implementation is a shared-
memory, multicore system (such as recent Apple workstations).

  The UPC and Co-Array Fortran are more appropriate for such an
environment.

28

Work to be done, continued

In addition, perhaps the whole approach to high-precision computation for
experimental math applications needs to be re-thought:

  One of the key developers of the QD and ARPREC libraries, is no longer
interesting in doing development or maintenance.

  Recent progress by the GMP and MPFR packages show good promise –
they out-performs ARPREC in certain precision levels, particularly above
1000 digits.

  The ARPREC high-level C++ and Fortran-90 translation modules
continue to be very effective (high-level modules for GMP

  Can we “marry” the high-level ARPREC modules with the low-level GMP
modules?

Outside the box:
  Are there other, completely novel programming environments that we

should consider for this type of computation?
  Can we devise PSLQ-like algorithms for more general spaces?

29

Summary

  The emerging “experimental” methodology in mathematics and
mathematical physics often requires hundreds or even thousands of
digits of precision.

  High-precision evaluation of integrals, followed by constant-recognition
techniques, has been a particularly fruitful area of recent research, with
many new results in pure math and mathematical physics.

  The PSLQ algorithm continues to be extremely effective in identifying
constants and in finding relationships between constants.

  Multi-level and multi-pair variants of PSLQ are much faster and more
effective than standard PSLQ.

  Much work needs to be done in developing new, parallel PSLQ software,
and in improving multiprecision software in general.

